Sunday, October 26, 2014

Java Project Titles|| Java Projects 2014 Free || IEEE Data Mining Project Titles - Abstracts

Posted by ADMIN at 12:12 PM 0 Comments

1. DecentralizeAccess Control with Anonymous Authentication of Data Stored in Clouds


       We    propose    a    new    decentralizeaccess control scheme for secure data storage in clouds that supports anonymous authentication. In the proposed scheme, the cloud verifies the authenticity of the series without knowing the users identity before storing data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user revocation. Moreover, our authentication and access control scheme is decentralized and robust, unlike other access control schemes designed for clouds  which are centralized. The communication, computation, and storage overheads are comparable to centralized approaches.

2. Modeling   of  Distributed      File Systems    for Practical Performance Analysis

Abstract—Cloud   computing   ha received significant attention recently. Delivering quality guaranteed services in clouds is highly desired. Distributed file systems (DFSs) are the key component of any cloud-scale data processing middleware. Evaluating the performance of DFSs is accordingly very important. To avoid cost for late life cycle performance fixes and architectural redesign, providing performance analysis before the deployment of DFSs is also particularly important. In this paper, we propose a systematic and practical performance analysis framework, driven by architecture and design models for defining the structure and behavior of typical master/slave DFSs. We put forward a configuration guideline for specifications of configuration alternatives of such DFSs, and a practical approach for both qualitatively and quantitatively performance analysis of DFSs with various configuration settings in a systematic way. What distinguish our approach  from  others  is  that  1)  most  of existing     works     rely     on     performancmeasurements under a variety of workloads/strategies, comparing with other DFSs or running application programs, but our approach is based on architecture and design level models and systematically derived performance models; 2) our approach is able to both qualitatively and quantitatively evaluate the performance of DFSs; and 3) our approach not only can evaluate the overall performance of a DFS but also its components and individual steps. We demonstrate the effectiveness of our approach by evaluating Hadoop distributed file system (HDFS). A series of real-world experiments on EC2 (Amazon Elastic Compute Cloud), Tansuo and Inspur Clusters, were conducted to qualitatively evaluate the effectiveness of our approach. We also performed a set of experiments of HDFS on EC2 to quantitatively analyze the performance and limitation of the metadata server of DFSs. Results show that our approach can achievsufficient performance analysis. Similarly, the proposed approach could be also applied to evaluate other DFSs such as MooseFS, GFS, and zFS.

3. Balancing Performance, Accuracy,    and Precision for Secure Cloud Transactions

AbstractIn       distributed       transactionadatabase systems deployed over cloud servers, entities cooperate to form proofs of authorizations that are justified by collections of certified credentials. These proofs and credentials may be evaluated and collected over extended time periods under the risk of having the underlying authorization policies or the user credentials being in inconsistent states. It therefore becomes possible for policy-based authorization systems to make unsafe decisions that might threaten sensitive resources. In this paper, we highlight the criticality of the problem. We then define the notion of trusted transactions when dealing with proofs of authorization. Accordingly, we propose several increasingly stringent levels of policy consistency constraints, and present different      enforcement      approaches      to guarantee the trustworthiness of transactions executing on cloud servers. We propose a Two-Phase Validation Commit protocol as a solution, which is a modified version of the basic Two-Phase Validation Commit protocols. We finally analyze the different approaches presented using both analytical evaluation of the overheads and simulations to guide the decision makers to which approach to use.

4. A  Scalable  TwoPhase  Top-Down Specialization Approach   for Data Anonymization Using MapReduce              on Cloud

Abstract—A large number of cloud servicerequire users to share private data like electronic health records for data analysis or mining, bringing privacy concerns. Anonymizing data sets via generalization to satisfy certain privacy requirements such as kanonymity is a widely used category of privacy preserving techniques. At present, the scale of data in many cloud applications increases tremendously in accordance with the Big Data trend, thereby making it a challenge for commonly used software tools to capture, manage, and process such largescale data within a tolerable elapsed time. As a result, it is a challenge for existing anonymization approaches to achieve privacy preservation on privacy-sensitive large-scale data sets due to their insufficiency of scalability. In this paper, we propose a scalable two-phase top-down specialization (TDS) approach to anonymize large-scale data sets using the MapReduce framework on cloud. In both phases of our approach, we deliberately design a group of innovative MapReduce jobs to concretely accomplish the specialization computation in a highly scalable way. Experimental evaluation results demonstrate that with our approach, the scalability and efficiency of TDS can be significantly improved over existing approaches.

5. Dynamic Optimization   of Multiattribute Resource Allocation  in Self-Organizing Clouds

By    leveraging    virtual    machine    (VM) technology which provides performance and fault isolation, cloud resources can be provisioned on demand in a fine grained, multiplexed manner rather than in monolithic pieces.  By  integrating  volunteer  computininto cloud architectures, we envision a gigantic self-organizing cloud (SOC) being formed to reap the huge potential of untapped commodity computing power over the Internet. Toward this new architecture where each participant may autonomously act as both resource consumer and provider, we propose a fully distributed, VM-multiplexing resource allocation scheme to manage decentralized resources. Our approach not only achieves maximized resource utilization using the proportional share model  (PSM), but also delivers provably and adaptively optimal execution efficiency. We also design a novel multi attribute range query protocol for locating qualified nodes. Contrary to existing solutions which often generate bulky messages per request, our protocol produces only one lightweight query message per task on the Content Addressable Network (CAN). It works effectively to find for each task its qualified resources under a randomized policthat     mitigates     the     contention     among requesters. We show the SOC with our optimized algorithms can make an improvement by 15-60 percent in system throughput than a P2P Grid model. Our solution also exhibits fairly high adaptability in a dynamic node-churning environment.

6. Scalable and Secure Sharing of Personal     Health Records in Cloud Computing Using Attribute-Based Encryption

Personal health record (PHR) is an emerginpatient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to Un authorized parties. To assure the patients' control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access, and efficient user revocation, have remained the most important challenges toward             achieving             fine-grained, cryptographically     enforced     data     access control. In this paper, we propose a novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semitrusted servers. To achieve fine- grained and scalable data access control for PHRs, we leverage attribute-based encryption (ABE) techniques to encrypt each patient's PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multiauthority ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are presented     which     show     the     securityscalability,  and  efficiency  of  our  proposescheme.

7.On  Data  StaginAlgorithms for Shared Data Accesses in Clouds

In  this  paper,  we  study  the  strategies  foefficiently achieving data staging and caching on a set of vantage sites in a cloud system with a minimum cost. Unlike the traditional research, we do not intend to identify the access patterns to facilitate the future requests. Instead, with such a kind of information presumably known in advance, our goal is to efficiently stage the shared data items to predetermined sites at advocated time instants to align with the patterns while minimizing the monetary costs for caching and transmitting the requested data items. To this end, we follow the cost and network models in [1] and extend the analysis to multiple data items, each with single or multiple copies. Our results show that under homogeneous cost model, when the ratio of transmission cost and caching cost is low, a single copy of each data item can efficiently serve all the user requests. While in multicopy situation, we also consider the tradeoff between the transmission cost and caching cost by controlling the upper bounds of transmissions and copies. The upper bound can be given either on per-item basis or on all-item basis. We present efficient optimal solutions based on dynamic programming techniques to all these cases provided that the upper bound is polynomially bounded by the number of service requests and the number of distinct data items. In addition to the homogeneous cost model, we also briefly discuss this problem under a heterogeneous cost model with some simple yet practical restrictions and present a 2-approximation algorithm to the general case. We validate our findings by implementing a data staging solver, whereby conducting extensive simulation studies on the behaviors of the algorithms.

Share This Post

Get Updates

Subscribe to our Mailing List. We'll never share your Email address.





AERONAUTICAL AEROSPACE AGRICULTURE ANDROID Android project titles Animation projects Artificial Intelligence AUTOMOBILE BANK JOBS BANK RECRUITMENTS BIG DATA PROJECT TITLES Bio instrumentation Project titles BIO signal Project titles BIO-TECHNOLOGY BIOINFORMATICS BIOMEDICAL Biometrics projects CAREER CAT 2014 Questions CHEMICAL CIVIL Civil projects cloud computing COMP- PROJ-DOWN COMPUTER SCIENCE PROJECT DOWNLOADS COMPUTER(CSE) CONFERENCE Data mining Projects Data protection. Design projects DIGITAL SIGNAL PROCESSING IEEE Project titles Dot net projects EBOOKS ELECTRICAL MINI PROJECTS ELECTRICAL PROJECTS DOWNLOADS ELECTRONICS MINI PROJECTS ELECTRONICS PROJECT DOWNLOADS EMG PROJECTS employment Engineering projects Exams Facts final year projects FOOD TECHNOLOGY FREE IEEE 2014 project Free IEEE Paper FREE IEEE PROJECTS GATE GAte scorecard GOVT JOBS Green projects GSM BASED Guest authors HIGHWAY IEEE 2014 projects ieee 2015 projects IEEE computer science projects IEEE Paper IEEE PAPER 2015 ieee project titles IEEE projects IEEE Transactions INDUSTRIAL INNOVATIVE PROJECTS INTERFACING IT IT LIST Java projects labview projects LATEST TECHNOLOGY list of project centers Low cost projects MARINE Matlab codes MATLAB PROJECT TITLES MATLAB PROJECTS MBA MBA 2015 projects MCA MECHANICAL MECHANICAL PROJECTS DOWNLOAD MINI PROJECTS modelling projects MP3 MP3 cutter Mp4 Networking topics ns2 projects online jobs PETROCHEMICAL PHYSIOLOGICAL MODELLING projects physiotheraphy Projects Power electronics power system projects PRODUCTION project centers project downloads Prosthesis projects RAILWAY RECRUITMENT 2012 Recent RECENT TECHNOLOGY RECENT TECHNOLOGY LIST RECRUITMENT Rehabilitation projects renewable power respiration projects RESUME FORMAT. Ring Tone Cutter Robotics projects. Robots in medical social network jobs Solar projects Songs Cutter Speech-music separation-Abstract structural engineering TECHNOLOGY technology management TELE COMMUNICATION TEXTILE TOP ENGINEERING COLLEGES Training VLSI


This blogs is an effort to club the scattered information about engineering and project titles and ideas available in the web. While every effort is made to ensure the accuracy of the information on this site, no liability is accepted for any consequences of using it. Most of the material and information are taken from other blogs and site with the help of search engines. If any posts here are hitting the copyrights of any publishers, kindly mail the details to It will be removed immediately.

Alexa Rank

back to top